10,892 research outputs found

    Learning Multi-Tree Classification Models with Ant Colony Optimization

    Get PDF
    Ant Colony Optimization (ACO) is a meta-heuristic for solving combinatorial optimization problems, inspired by the behaviour of biological ant colonies. One of the successful applications of ACO is learning classification models (classifiers). A classifier encodes the relationships between the input attribute values and the values of a class attribute in a given set of labelled cases and it can be used to predict the class value of new unlabelled cases. Decision trees have been widely used as a type of classification model that represent comprehensible knowledge to the user. In this paper, we propose the use of ACO-based algorithms for learning an extended multi-tree classification model, which consists of multiple decision trees, one for each class value. Each class-based decision trees is responsible for discriminating between its class value and all other values available in the class domain. Our proposed algorithms are empirically evaluated against well-known decision trees induction algorithms, as well as the ACO-based Ant-Tree-Miner algorithm. The results show an overall improvement in predictive accuracy over 32 benchmark datasets. We also discuss how the new multi-tree models can provide the user with more understanding and knowledge-interpretability in a given domain

    Using a unified measure function for heuristics, discretization, and rule quality evaluation in Ant-Miner

    Get PDF
    Ant-Miner is a classification rule discovery algorithm that is based on Ant Colony Optimization (ACO) meta-heuristic. cAnt-Miner is the extended version of the algorithm that handles continuous attributes on-the-fly during the rule construction process, while ?Ant-Miner is an extension of the algorithm that selects the rule class prior to its construction, and utilizes multiple pheromone types, one for each permitted rule class. In this paper, we combine these two algorithms to derive a new approach for learning classification rules using ACO. The proposed approach is based on using the measure function for 1) computing the heuristics for rule term selection, 2) a criteria for discretizing continuous attributes, and 3) evaluating the quality of the constructed rule for pheromone update as well. We explore the effect of using different measure functions for on the output model in terms of predictive accuracy and model size. Empirical evaluations found that hypothesis of different functions produce different results are acceptable according to Friedman’s statistical test

    Investigating Evaluation Measures in Ant Colony Algorithms for Learning Decision Tree Classifiers

    Get PDF
    Ant-Tree-Miner is a decision tree induction algorithm that is based on the Ant Colony Optimization (ACO) meta- heuristic. Ant-Tree-Miner-M is a recently introduced extension of Ant-Tree-Miner that learns multi-tree classification models. A multi-tree model consists of multiple decision trees, one for each class value, where each class-based decision tree is responsible for discriminating between its class value and all other values present in the class domain (one vs. all). In this paper, we investigate the use of 10 different classification quality evaluation measures in Ant-Tree-Miner-M, which are used for both candidate model evaluation and model pruning. Our experimental results, using 40 popular benchmark datasets, identify several quality functions that substantially improve on the simple Accuracy quality function that was previously used in Ant-Tree-Miner-M

    A mathematically assisted reconstruction of the initial focus of the yellow fever outbreak in Buenos Aires (1871)

    Get PDF
    We discuss the historic mortality record corresponding to the initial focus of the yellow fever epidemic outbreak registered in Buenos Aires during the year 1871 as compared to simulations of a stochastic population dynamics model. This model incorporates the biology of the urban vector of yellow fever, the mosquito Aedes aegypti, the stages of the disease in the human being as well as the spatial extension of the epidemic outbreak. After introducing the historical context and the restrictions it puts on initial conditions and ecological parameters, we discuss the general features of the simulation and the dependence on initial conditions and available sites for breeding the vector. We discuss the sensitivity, to the free parameters, of statistical estimators such as: final death toll, day of the year when the outbreak reached half the total mortality and the normalized daily mortality, showing some striking regularities. The model is precise and accurate enough to discuss the truthfulness of the presently accepted historic discussions of the epidemic causes, showing that there are more likely scenarios for the historic facts.Comment: 25 pages, 12 figure

    A Fast Chi-squared Technique For Period Search of Irregularly Sampled Data

    Full text link
    A new, computationally- and statistically-efficient algorithm, the Fast χ2\chi^2 algorithm, can find a periodic signal with harmonic content in irregularly-sampled data with non-uniform errors. The algorithm calculates the minimized χ2\chi^2 as a function of frequency at the desired number of harmonics, using Fast Fourier Transforms to provide O(NlogN)O (N \log N) performance. The code for a reference implementation is provided.Comment: Source code for the reference implementation is available at http://public.lanl.gov/palmer/fastchi.html . Accepted by ApJ. 24 pages, 4 figure

    Analytic approximation of solutions of parabolic partial differential equations with variable coefficients

    Get PDF
    A complete family of solutions for the one-dimensional reaction-diffusion equation uxx(x,t)q(x)u(x,t)=ut(x,t) u_{xx}(x,t)-q(x)u(x,t) = u_t(x,t) with a coefficient qq depending on xx is constructed. The solutions represent the images of the heat polynomials under the action of a transmutation operator. Their use allows one to obtain an explicit solution of the noncharacteristic Cauchy problem for the considered equation with sufficiently regular Cauchy data as well as to solve numerically initial boundary value problems. In the paper the Dirichlet boundary conditions are considered however the proposed method can be easily extended onto other standard boundary conditions. The proposed numerical method is shown to reveal good accuracy.Comment: 8 pages, 1 figure. Minor updates to the tex

    How does aromaticity rule the thermodynamic stability of hydroporphyrins?

    Get PDF
    Several measures of aromaticity including energetic, magnetic, and electron density criteria are employed to show how aromatic stabilization can explain the stability sequence of hydroporphyrins, ranging from porphin to octahydroporphin, and their preferred hydrogenation paths. The methods employed involve topological resonance energies and their circuit energy effects, bond resonance energies, multicenter delocalization indices, ring current maps, magnetic susceptibilities, and nuclear-independent chemical shifts. To compare the information obtained by the different methods, the results have been put in the same scale by using recently proposed approaches. It is found that all of them provide essentially the same information and lead to similar conclusions. Also, hydrogenation energies along different hydrogenation paths connecting porphin with octahydroporphin have been calculated with density functional theory. It is shown by using the methods mentioned above that the relative stability of different hydroporphyrin isomers and the observed inaccessibility of octahydroporphin both synthetically and in nature can be perfectly rationalized in terms of aromaticity
    corecore